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Abstract
The quantized electron-diffusion thermoelectric power S is studied for a
general one-dimensional band structure in ballistic channels with applications
to a single-quantum-well channel and tunnel-coupled double-quantum-well
channels in a perpendicular magnetic field. We find a field-induced sign reversal
of S and oscillations in double-well channels.

Transport properties of quasi-one-dimensional (1D) doped semiconductor structures are of
current interest. An earliest form of 1D single-quantum-well wires (SQWRs) is the so-called
quantum point contact illustrated in figure 1(a), where the channel length is very short, of the
order of a fraction of a micrometre. Electrons pass through this wire (or channel) ballistically
at low temperatures (T ) under a DC bias. The conductance G is quantized and decreases in
steps of 2e2/h in a spin-degenerate system (assumed in this paper) when the channel width
is reduced gradually [1]. Here, e is the absolute electronic charge and h is Planck’s constant.
Similar quantized G steps were observed in SQWRs as a function of a magnetic field B
applied in the perpendicular (i.e., z) direction shown in figure 1(a) [2]. Recently, ballistic
thermoelectric power (TEP) S was observed in SQWRs [3] and was also studied theoretically
in zero B [3–5]. Previous studies of the TEP [3–5] are relevant to simple band structures
with a single minimum for each sublevel. More complicated band structures with two minima
and a maximum are generated in tunnel-coupled double-quantum-well wires (DQWRs) in
the presence of a perpendicular B as shown in figure 1(b) [6, 7]. For simplicity, we assume
that the wells are narrow and deep in the growth (z) direction, allowing only the ground-
level occupation. However, channels may be wide in the x direction and allow multi-sublevel
occupation. In this paper, we calculate the ballistic electron-diffusion TEP for a general 1D
structure and apply the result to SQWRs and DQWRs in perpendicular B . We find that in
ballistic DQWRs B causes a sign reversal of S and oscillations.

0953-8984/04/203379+06$30.00 © 2004 IOP Publishing Ltd Printed in the UK 3379

http://stacks.iop.org/JPhysCM/16/3379


3380 S K Lyo and D H Huang

Z

wire-1

wire-2

Y

XCur
re

nt

B

wire

B

Cur
re

nt
µ

µ1

µ2

µ3

µ1

µ2

µ3

source contact

drain contact(a) (b)

Figure 1. (a) A schematic diagram of a SQWR and the energy dispersion. A narrow channel
is formed by applying a negative bias on the top split metallic gate, not shown. (b) A schematic
diagram for DQWRs and the energy dispersion in a magnetic field. Electrons tunnel between the
wires through the Alx Ga1−x As barrier in the z direction. Electrons behave like holes for the TEP at
the hollow circle on the dispersion curve. A magnetic field B lies in the x direction for the DQWRs
and in the z direction for the SQWR. Black dots denote the Fermi points.

The electron-diffusion TEP is the ratio of the heat current and the charge current of the
electrons divided by T in the presence of a linear DC field. The ballistic heat (Q(1)) and charge
(Q(0)) currents are given, for symmetric electronic structures, by

Q(�) = 2(−e)1−�
∑
n,k

vnk

L (εnk − µ̄)�[θ(−vnk) f (0)
nk,R(1 − f (0)

nk,L) + θ(vnk) f (0)
nk,L(1 − f (0)

nk,R)], (1)

where � = 0, 1, L is the channel length, µ̄ is the chemical potential in the channel, and
θ(x) is the unit step function. In equation (1), n is the sublevel index, k is the wavenumber,
vnk = ∂εnk/∂h̄k is the velocity, and f (0)

nk,α is the Fermi function for the 2D electron gas (2DEG)
on the left- (α = L) and the right-hand (α = R) side, with the chemical potential µα . The
physical meaning of equation (1) is self-evident. Equation (1) can be simplified, in view of
vn,−k = −vnk , as

Q(�) = 2(−e)1−�

π

∑
n

∫ ∞

0
|vnk |(εnk − µ̄)�( f (0)

nk,L − f (0)
nk,R) dk. (2)

Using µL + eV = µR ≡ µ, f (0)

nk,L − f (0)

nk,R = eV f (0)′
nk , and µ̄ → µ = µL = µR in the limit

V → 0, where V is the infinitesimal voltage difference between the left- and the right-hand
2DEGs, we find

Q(�) = 2eV (−e)1−�

π

∑
n

(∫ εn,k1

εn,k=0

+
∫ εn,k2

εn,k1

+ · · · +
∫ ∞

εn,k∗

)
sgn(vnk)(εnk − µ)� f (0)′

nk dεnk, (3)

where f (0)′
nk is the first derivative of the Fermi function f (0)

n,k = f (0)(εn,k) with respect to εn,k ,
and the lower limit equals the energy εn,k=0 at k = 0. In equation (3), the energy integration
over the range 0 < k < ∞ is chopped into the sum of the integrations between the successive
extremum points εn,km , where εn,k is a monotonic function of k and εn,k∗ is the last extremum
(minimum) point. Each integration can be carried out analytically for both � = 0, 1, yielding

S = Q(1)

T Q(0)
= − kB

eF

∑
n

∑
γ

Cn,γ

[
β(εn,γ − µ) f (0)(εn,γ ) + ln(eβ(µ−εn,γ ) + 1)

]
, (4)
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where β = 1/kBT and

F =
∑

n

∑
γ

Cn,γ f (0)(εn,γ ). (5)

Here, γ -summation indicates summing over all the energy-extremum points on each curve n
(−∞ < k < ∞). The quantity εn,γ is the extremum energy. For a given curve n, Cn,γ = 1
for a local energy minimum point and Cn,γ = −1 for a local energy maximum point. The
quantity F equals the number of pairs of the Fermi points at T = 0 and is related to G by
G = 2e2 F/h. The result in equation (4) is equivalent to the earlier result obtained for SQWRs
with a single minimum point for each energy-dispersion curve [4]. It can also be obtained
using an energy-dependent transmission-coefficient approach [4, 8, 9].

The TEP is quantized at T = 0 K as S = −(kB/e) ln 2/[G/(2e2/h)] in general at
the energy-extremum points µ = εn,γ in equation (4), where G = (2e2/h)(i + 1/2) with
i = 1, 2, . . . as obtained earlier by Streda [4]. The peak heights of S and corresponding G
values satisfy this relationship approximately even at nonzero temperatures in our numerical
results to be displayed later.

In this paper, we study a SQWR and DQWRs illustrated in figure 1. We assume
that, for both structures, the channel confinement is given by the parabolic potential energy
V (x) = m∗ω2

x x2/2, where m∗ is the effective mass. The eigenvalues are given for B = 0 by
εnk = (n + 1/2)h̄ωx + h̄2k2/2m∗ with n = 0, 1, 2, . . .. The QW depth and widths for the z
confinement are designated as V0 and LW, while the width of the centre barrier is given by LB

for DQWRs.
We first consider a SQWR illustrated in figure 1(a) with B‖z perpendicular to the

channel plane. The eigenvalues are given by εnk = (n + 1/2)h̄
x + h̄2k2/2m∗∗, where
n = 0, 1, . . . , 
x = (ω2

x + ω2
c)

1/2, ωc = eB/m∗c, and m∗∗ = m∗/[1 − (ωc/
x)
2] [10].

The effective mass m∗∗ becomes heavier as B increases, increasing the density of states.
As a result, the sublevels n in figure 1(a) become depopulated successively for increasing
B . Figure 2 shows G and S of a SQWR obtained from equation (4) for two temperatures
as a function of B when several levels are occupied at B = 0. The parameter h̄ωx and
the electron density n1D are given in the inset. The result in figure 2(a) is independent of
LW and V0 under the assumption that only the ground level is occupied in the z direction.
The TEP is very small when µ lies away from the edges of the sublevels because the
contributions to the heat current Q(1) in equation (3) from above µ (εnk > µ) cancels
those from below µ (εnk < µ). This cancellation does not occur when µ is within the
thermal energy kBT of the sublevel edges, yielding spikes for the TEP just before a level
is depopulated at the knees of the quantum steps of G. These spikes broaden as T is
raised. This behaviour is similar to the density dependence of the field-free TEP studied
earlier [4].

For DQWRs, new interesting effects are obtained when B is in the x direction. The role
of B is to displace the energy-dispersion parabolas of one QW relative to those of the other
QWs in k space by δk = d/�2

c , where d is the centre-to-centre distance of the QWs and
�c = √

h̄c/eB. The two parabolas in the QWs with the same n then anticross at the crossing
point due to tunnelling, opening a gap �SAS between the symmetric and antisymmetric states
at k = 0 as shown in figure 1(b) for the ground level n = 0. In this case, the eigenvalue εnk and
the magnitude of �SAS (i.e., mixing of the wavefunctions in the two QWs) depend on the QW
width LW, barrier width LB, and the barrier height V0 and are calculated numerically [6, 11].
The parabolas move away from each other in the k-axis direction as δk ∝ B increases, pushing
the gap through the chemical potential µ. The inset in figure 1(b) shows the relative positions
of µ with respect to the gap for three different B values. This level splitting occurs for each n.
The levels become depopulated as B increases.
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Figure 2. Ballistic (a) G and (b) S for two temperatures
in SQWR with three levels occupied initially at B = 0.
The parameters are defined in the text.

Figure 3. Ballistic (a) G and (b) S for two temperatures
in DQWRs with only n = 0 occupied. The parameters
are defined in the text.

Figure 3 shows S and G calculated from equation (4) for DQWRs at two temperatures for
the case of large h̄ωx and low density where only the tunnel-split n = 0 doublet is occupied
at B = 0 as indicated in figure 1(b). The structure parameters are given in the figure. The
gap equals �SAS = 1.6 meV for this structure and is insensitive to B . The conductance shows
a minimum near B = 5.1 T and is V-shaped in striking contrast with the behaviour shown
for a SQWR in figure 2(a). The conductance equals the number of pairs of Fermi points in
units of 2e2/h, namely 2 for µ = µ1, 1 for µ = µ2, and 2 for µ = µ3 in figure 1(b), where
the horizontal dotted lines illustrate the fact that the anticrossing gap sweeps through µ as
B increases, indicating the positions of the chemical potentials relative to the gap for three
concomitant B values: B1 < B2 < B3. The TEP shows a surprising feature: it changes sign
near the G minimum just before it begins to rise again. At this point, µ crosses the local
energy extremum (i.e., maximum) point marked by the hollow circle on the lower branch in
figure 1(b), doubling the number of Fermi points and thus G. The dispersion is holelike (i.e.,
inverted) at this point, yielding a sign reversal for S.

For small h̄ωx 	 �SAS corresponding to wide channels, many levels are occupied in
high-density DQWRs. In this case, G follows a V-shaped dependence on B as shown in
figure 4 at two temperatures. A similar B dependence was observed earlier in DQWRs [12].
The inset illustrates the tunnel-split sublevels for this case at B near the G minimum. The
B dependence of G can be explained in a similar way as in figure 3(a) by accounting for the
Fermi points from all the levels n together with the B-dependent movement of µ with respect
to the gap [7]. For SQWRs, G decreases stepwise monotonically as a function of B as in
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Figure 4. Ballistic G (left axis, upper curves) and Sd (right axis, lower curves) for two temperatures
in DQWRs with many levels occupied. The parameters are defined in the text. The inset shows
the tunnel-split energy dispersion at B = 3.4 T near the G minimum.

figure 2(a) and is not shown [2]. Ballistic S is also displayed for the DQWRs in figure 4 at
two temperatures. Note that −S shows positive peaks initially when µ crosses the bottoms of
the upper branches successively for lower n values. It changes sign near the G minimum just
before it begins to rise again. At this point, µ crosses the local energy maximum point at the
top (at k = 0) of the lower branch, increasing the number of the Fermi points and thus G. For
this point, the dispersion is holelike, yielding the sign reversal for S. From this point on, µ

keeps crossing similar local energy maximum points belonging to lower n values, producing
successive negative holelike peaks for −S. The −S peak near the G minimum at 3.4 T is large
because −S is inversely proportional to G.

In summary, we have studied the electron-diffusion thermoelectric power for a general
one-dimensional band structure in the ballistic regime. The result was applied to a single-
quantum-well channel and tunnel-coupled double-quantum-well channels in a perpendicular
magnetic field. In double-quantum-well channels, we showed a field-induced sign reversal
and oscillations of the thermoelectric power.
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